

Reg. No.:	101
-----------	-----

Question Paper Code: 40898

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Second Semester

Computer Science and Engineering CS6201 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

> (Common to: Information Technology) (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART – A (10×2=20 Marks)

- 1. Why NAND and NOR gates are called Universal gates?
- 2. Convert the following number from one base to another: $(76.4)_8 = (?)_{10}$.
- 3. State the different modeling techniques used in HDL.
- 4. Draw the truth table of Full adder.
- 5. What is the drawback of SR flip-flop? How it is avoided in JK flip-flop?
- 6. List the different types of shift registers.
- 7. What are the different techniques used in state assignment?
- 8. Define Hazard.
- 9. How many address lines and data lines are there in 4K X 8 ROM?
- 10. How many check bits are required for single bit error detection and correction?

11. a) Simplify the following function using Karnaugh map method: $F(A, B, C, D) = \sum m(0, 2, 5, 8, 10, 15) + \sum d(4, 14)$ and implement the circuit using only NOR gates. (OR) b) Simplify the following Boolean Expression using Tabulation method and construct the logical circuit using only NAND gates. $F(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + \sum d(4, 8, 11).$ 12. a) With suitable illustration explain the operation of BCD adder. (16)(OR) b) Design 5 to 32 decoder using combination of 2 to 4 and 3 to 8 decoders. (16)13. a) Design Synchronous Mod 10 counter using D flip flop. (16)(OR) b) Write the structural VHDL description of Universal 4 bit shift register. (16)14. a) Design an asynchronous sequential circuit that has two inputs X₁ and X₂ and one output Z. When $X_1 = 0$, the output Z = 0. The first change in X_2 that occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 until X_1 returns to 0. (16)(OR) b) Write a detailed note on Hazards. (16)15. a) i) Design and implement 3 bit binary to Gray code converter using PLA. (8)ii) The Hamming code 101101101 is received. Correct it if any errors. There are four parity bits and odd parity is used. **(8)**

(OR)

b) Write a detailed note on sequential programmable devices. (16)